Package ‘chunknet’

November 26, 2023
Type Package

Title Create a fast, scalable network of peer-to-peer R processes to
distribute computation with larger than memory data.

Version 1.1
Date 2022-10-14

Author Jason Cairns

Maintainer <jason.cairns@auckland.ac.nz>

Description Create a fast, scalable network of peer-to-
peer R processes to distribute computation with larger than memory data.

Imports orcv, uuid
License MIT

NeedsCompilation no

R topics documented:

async_pull . . .o 1
doccall e 2
Pull o e e e e e 3
push . . 4
worker_node e 5
Index 7
async_pull Asynchronous Data Pull
Description

Send a request for data as referenced by a list of href’s, with the response to be returned asyn-
chronously.

Usage

async_pull (hrefs, ...)

2 do.ccall

Arguments
hrefs Character vector of href references for data objects
.. Kept for future methods

Details

Locations for the data referenced by the href vector are attained, with the containing nodes re-
quested to send the data when available. Data can be obtained from the underlying message queue
after it is posted.

Value

Closed file descriptors of the locations sought.

See Also
pull, push

Examples
##—-——— Should be DIRECTLY executable !! —-——-
##—— ==> Define data, use random,

##-—or do help(data=index) for the standard data sets.

The function is currently defined as
function (hrefs, ...)
{
if (!'length (hrefs))
return ()
stopifnot (is.character (hrefs))
locations <- get_locations (hrefs)
hrefs_at_locs <- split (hrefs, as.factor(locations))

mapply (function (location, hrefs) orcv::send(location, pasteO("GET /async/data/",

paste (hrefs, collapse = ","))), unique(locations), hrefs_at_locs)

do.ccall Chunk Call

Description

A chunk function applicator

Usage

do.ccall (procedures, argument_lists, target, post_locs = TRUE, balance

FALSE)

pull

Arguments

procedures list of functions, or character vector naming functions

argument_lists

list containing argument lists corresponding to each procedure

target Optional target ChunkReference
post_locs Logical, send location of created chunk references to locator server or not.
balance Logical of whether to balance results along the cluster, or a Balance function to
apply the balancing.
Details

The principal means of performing remote operations on chunks. Returns immediately, without
waiting for results of chunk operations.

Value

List of ChunkReferences.

Examples
##—-——— Should be DIRECTLY executable !! ———-
##-— ==> Define data, use random,

##-—or do help(data=index) for the standard data sets.

The function is currently defined as
function (procedures, argument_lists, target, post_locs = TRUE,
balance = FALSE)

locations <- determine_locations (argument_lists, target,

balance)

arguments_by_loc <- disperse_arguments (argument_lists, locations)
comps_by_loc <- send_computations (procedures, arguments_by_loc,

locations)

comprefs <- unsplit (comps_by_loc, as.factor(locations))
output_hrefs <- sapply(comprefs, output_href)

if

(post_locs)
post_locations (output_hrefs, locations)

mapply (ChunkReference, output_hrefs, locations, comprefs,

SIMPLIFY = FALSE)

pull

Pull data to current node

Description

Synchronous pull of data to current node.

4 push

Usage

pull(x, ...)

pull.ChunkReference (x, ...)

pull.character(x, ...)

pull.list(x, ...)
Arguments

x Object to dispatch on.

Further arguments sent to methods.

Details

Pull data from external source locally. A vector of character hrefs yield a list of the referenced
data that is then unsplit, with whatever method defined for unsplit on the data then determining the
resultant return value. A list of ChunkReferences returns their resultant values, as does a singular
ChunkReference.

Value

Value of the unsplit data sources.

See Also

async_pull, push

Examples
##-——— Should be DIRECTLY executable !! ———-
##—— ==> Define data, use random,

##-—or do help(data=index) for the standard data sets.

The function is currently defined as
function (x, ...)
UseMethod ("pull", x)

push Push data to other node

Description

Push data to another node’s message queue.

Usage
push (x, locations, ...)
push.default (x, locations, post_locs=TRUE,...)
push.list (x, locations, ...)

push.Chunk (x, locations, ...)

worker _node

Arguments

X
locations

post_locs

Value

Argument to dispatch on. What item or contained item to send.
Optional set of locations to send x to.
Logical, to send locations of objects to the locator node or not.

Further arguments passed on to methods

List of ChunkReferences referring to the sent object(s).

See Also
pull
Examples
##-——— Should be DIRECTLY executable !! —-——-
##—— ==> Define data, use random,
##-—or do help(data=index) for the standard data sets.

The function is currently defined as

function (x,

locations, ...)

UseMethod ("push", x)

worker_node

Cluster node initialisers

Description

Initiate one of either worker or locator node.

Usage
worker_node (address = NULL, port = 0L, ..., verbose = FALSE)
locator_node (address = NULL, port = 0L, ..., verbose = FALSE)
Arguments
address character address for the communication node to be reachable by. Leave NULL
for localhost.
port Integer port to bind to.
Arguments to pass on to methods
verbose Logical, start verbose or not.
Value

None; loops.

6 worker_node

Examples
##-——— Should be DIRECTLY executable !! ———-
##-— ==> Define data, use random,

##-——or do help(data=index) for the standard data sets.

The function is currently defined as

function (address = NULL, port = 0L, ..., verbose = FALSE)
{
options (chunknetVerbose = verbose)
orcv::start (address, port, threads = 1L)
init_function(...)
repeat {

event <- orcv::receive (keep_conn = TRUE)
handle (event)
log("...DONE")

Index

async_pull, 1,4

do.ccall,?2

worker_node, 5
worker_node, locator_node
(worker_node), 5

	async_pull
	do.ccall
	pull
	push
	worker_node
	Index

